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Recent theoretical findings show that the curvature of streamsurfaces naturally
warping in the crossflow direction of a three-dimensional boundary layer can maintain
centrifugal forces, provoking unsteady short-scaled vortices. The wave/vortex
eigenmode coupling takes place in the linear stage of disturbance evolution and
results in streamwise absolute instability. The two-dimensional flow past a curved
cylindrical surface under consideration here provides an example where centrifugal
forces are associated with the fixed curvature of a solid wall bending in the direction of
the main stream. The spiral-type Görtler vortices develop in proximity to the surface
and their interaction with the Tollmien–Schlichting eigenmodes creates a mechanism
driving disturbances both downstream and upstream of a perturbing agency. The
vortex eigenmodes arising from centrifugal forces are balanced out by the normal-
to-wall pressure gradient. Some higher-order terms need to be kept in its expansion
to achieve the modal coupling. As a consequence, a side band appears in the spectra
of eigen-frequencies and wavenumbers featuring the classical triple-deck scheme. The
extended composite asymptotic model proves to be self-consistent, with the Cauchy
problem well-posed in the limit of large Reynolds numbers. It follows from the
extended model that the boundary layer on a concave surface, much like the one
with crossflow, suffers absolute instability in the streamwise direction. This unusual
property may lead to earlier transition or, conversely, be exploited to artificially excite
the nonlinear vortex structures with delayed transition.

1. Introduction
The Görtler instability of flow past a concave solid surface has profound similarities

to that occurring in a fluid under the action of dynamical effects of rotation. Rayleigh
(1880, 1916) was the first to study a base inviscid swirling flow endowed with angular
velocity Ω = Ω(r) which can vary in an arbitrary way with the distance r from the
rotation axis. By a simple physical reasoning, he arrived at the conclusion that a
necessary and sufficient condition for stability to axisymmetric disturbances takes the
form

R(r) =
1

r3

d

dr
(r2Ω)2 � 0 (1.1)

everywhere in the flow field. The overbars in (1.1) and below are used to designate
non-dimensional quantities. The stability of viscous fluid in a gap between two coaxial
cylinders has been widely investigated. In particular, Taylor (1921) showed that the
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motion emerging at the onset of instability is axisymmetric, in full accord with the
assumption by Rayleigh (1880, 1916). But more importantly, (1.1) proved to break
down if the cylinders rotated in the opposite directions. Hence it became clear that
viscosity plays a crucial role in stability of rotating fluid. Vortical disturbances in a flow
between two cylinders were further examined, theoretically as well as experimentally,
in remarkable papers by Taylor (1923, 1935). This work led him to the discovery of
centrifugal instability acted upon by viscous effects.

Görtler (1940) extended the study of centrifugal instability to boundary layers on
concave surfaces. Analogous conditions are realized according to subsequent work by
Görtler (1955) in the vicinity of the stagnation point on the blunted nose of a body.
The same is true with regard to concave streamlines in the region where a separated
shear layer reattaches to a solid surface. However, as will be shown in the present
paper, the curvature of naturally bending streamlines does not act in the same way
as the fixed curvature of a solid surface. Vortical disturbances typical of this type of
boundary-layer instability are referred to as Görtler vortices. As usual, the Görtler
number

Gö =
1

|Rs |1/2
Re = Re |κ |1/2

(1.2)

is introduced to determine their structure. Here κ and Rs are the local curvature of a
body and the radius of curvature, respectively; Re denotes the Reynolds number. In
contrast to Tollmien–Schlichting waves, the Görtler vortices were assumed in earlier
investigations to be standing disturbances. Those investigations encouraged a great
many attempts to resolve the centrifugal viscous instability problem both theoretically
and experimentally. The linear asymptotic analysis by Hall (1982) applies to the vortex
development in space, whereas in Hall (1983) allowance is made for the boundary-
layer growth in the downstream direction. Further results in the framework of a
time-independent approach are available in Hall (1990), Floryan (1991) and Saric
(1994).

In the wake of the pioneering work by Taylor (1921, 1923, 1935) more complicated
swirling waves superimposed on the primary stationary disturbances have been
observed in the fluid motion in a gap between two cylinders. Their time-dependent
counterparts are also present in boundary-layer flows. However, the spatial open-flow
properties of the Görtler problem make it unique. It does not share the intricate
bifurcations intrinsic to the Taylor problem (Coles 1965). Nevertheless Timoshin
(1990), Denier, Hall & Seddougui (1991) and Choudhari, Hall & Streett (1994)
identified five different asymptotic regimes in the limit of large Görtler numbers,
depending on the non-dimensional wavelength λz in the spanwise direction. If the
surface curvature κ =O(1), then this limit is equivalent by virtue of (1.2) to the
assumption that Re → ∞. One of these five regimes (the long-wavelength one in terms
of λz) is based on viscous/inviscid interaction of the triple-deck type considered
in more detail below. It will be addressed to shed light on the crucial impact of
centrifugal forces on the process of disturbance amplification, provoking a new type
of instability.

The growth of stationary Görtler vortices is governed by the linear centrifugal
instability up to a point where a strong nonlinear rearrangement of the velocity field
occurs. Then travelling-wave-type disturbances in the form of sinuous and varicose
secondary eigenmodes come into play. According to Li & Malik (1995) and Bottaro &
Klingmann (1996) it is precisely these secondary instabilities which cause the laminar
boundary layer on a concave wall to break down at some stage prior to transition.
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To place the current work into context, earlier asymptotic studies on wave/vortex
interactions by Hall & Smith (1988, 1989, 1991), Smith & Walton (1989) and Walton &
Simth (1992) are worthy of mention. They are not confined to weakly nonlinear
disturbances but focus on truly nonlinear amplification mechanisms. According to
Hall & Smith (1988, 1989, 1991), in strong interactions the surface curvature is not
required at all to sustain longitudinal vortex structures essentially identical to Görtler
vortices. The secondary instability properties are known to be in general different
from those featuring the primary linear instability. In fact, all secondary instabilities
discovered so far in the boundary layer with crossflow are of convective nature (Koch
2002; Wassermann & Kloker 2002; Saric, Reed & White 2003). One may infer from
this that the streamwise absolute instability of primary crossflow vortices does not
necessarily lead to earlier transition.

The aforementioned stationary regime controlled by the triple-deck disturbance
pattern first appeared in Rozhko & Ruban (1987) where it was referred to as
criss-cross interaction. The governing equations were applied by Rozhko, Ruban &
Timoshin (1988) to the boundary layer on a body with an elongated obstacle placed
on its curved surface. In this earlier work the process of criss-cross interaction was not
identified with the formation of Görtler vortices. The fact that both mechanisms are
inextricably entwined became clear from the analysis by Timoshin (1990) and Denier
et al. (1991). With time-dependence included, Ruban (1990a, b) tackled the receptivity
problem on the wave packet emitted by a vibrator operating in the pulse mode. Four
years later Choudhari et al. (1994) came up with a different approach to solving
the problem. Singular asymptotic expansions embracing both Tollmien–Schlichting
waves and the unsteady spiral-type Görtler vortices were briefly discussed by Ryzhov
(2003) and Ryzhov & Bogdanova-Ryzhova (2003). In an extended triple-deck model,
the Görtler vortices give rise to a side band in the Tollmien–Schlichting spectrum of
eigen-frequencies and wavenumbers. The coupling of wave and vortical eigenmodes
brings about a dramatic change in the boundary-layer properties that results in
absolute instability in the streamwise direction. Unlike the convective instability
provoked by disturbances sweeping downstream from a site where they were excited,
in this scenario of transition the highly modulated wave packets are capable of
advancing upstream of a generator operating in the pulse mode. Hence the group
velocity of signals appears in place of the phase velocity of monochromatic Tollmien–
Schlichting wave trains. An analogous effect has been discovered by Lingwood
(1997) and Ryzhov & Terent’ev (1998) in their studies of a three-dimensional
boundary layer with crossflow. In either case, a small parameter depending on the
Reynolds number and incorporating some other quantities such as skin friction and
characteristic temperatures enters the dispersion relation typical of the eigenmode
coupling regime. A particular value of this parameter determines the time/space
scaling of side-band oscillations responsible for absolute instability of the boundary
layer whether it be two-dimensional in the unperturbed state or three-dimensional
from the very beginning owing to the presence of crossflow. A strong singularity
appearing in the dispersion relation underlies a remarkable mathematical analogy
between the two types of vortical disturbances. It is this singularity which underlies
the mechanism driving wave packets upstream, against the oncoming boundary
layer.

Our concern is mainly with the fundamental physical processes that take place in
the viscous near-wall sublayer. A composite asymptotic model of the triple-deck type
is advanced to provide a unified treatment of oscillations in the Tollmien–Schlichting
interval of frequencies and wavenumbers as well as vortical eigenmodes from the
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spectral side band. Alterations introduced to the interaction law relating the self-
induced pressure to the instantaneous displacement thickness are the cornerstone of
the asymptotic model. On the assumption that the local Reynolds number Re is
large enough, the contribution from centrifugal forces to the normal-to-wall pressure
gradient proves to be O(ε3) within the Tollmien–Schlichting wave range, where
ε =Re−1/8 in accord with the conventional version of the triple-deck theory. However,
the correction term becomes comparable with the leading-order one provided that the
spiral-type Görtler vortices determine the disturbance pattern scaled in terms of the
spectral side band.

The local Reynolds number Re is based on a reference length L∗ associated with
a specific point on a concave cylindrical surface, the free-stream velocity U ∗

∞, density
ρ∗

∞ and viscosity µ∗
∞ just outside the boundary layer. Only subsonic flows are under

consideration, so the Mach number M∞ < 1. The time t and spatial orthogonal
curvilinear coordinates (x, y, z) are non-dimensionalized with respect to L∗/U ∗

∞ and
L∗, respectively; the x-axis is aligned with the direction of the local main stream, y

stands for the normal-to-wall distance and z defines the spanwise direction of the
surface generators. The corresponding non-dimensional velocities are based on U ∗

∞,
and the streamwise velocity profile U0(y2), where y = Re−1/2y2, specifies the boundary-
layer properties. Given that a ratio µ∗/µ∗

∞ of viscosities is expressed in terms of a ratio
T ∗/T ∗

∞ of temperatures by the Chapman linear law µ∗/µ∗
∞ = CT ∗/T ∗

∞, the normalized
wall shear stress is

τw = C1/2 T ∗
w

T ∗
∞

dU0 (0)

dy2

(1.3)

The density ρ and excess pressure p are non-dimensionalized with respect to ρ∗
∞ and

ρ∗
∞U ∗2

∞ , respectively, and R0(y2) denotes the density profile in the original boundary
layer. For an insulated surface dR0(0)/dy2 = 0, but if the heat flux occurs across the
surface then dR0(0)/dy2 �= 0. Mathematical descriptions of these two regimes are
quite different (Stewartson 1974).

2. Curvature-related pressure
In order to ascertain how strongly the surface curvature can affect the spectral

parameters of Tollmien–Schlichting waves, higher-order expansions need to be
introduced in the conventional triple-deck scheme. However, as consideration of space
prevents us from thoroughly expounding the general theory, only terms responsible
for the curvature effects underlying the boundary-layer structure in the original and
perturbed states will be treated in detail.

Asymptotic expansions

To elucidate this issue of conceptual significance, let us begin with a discussion of
asymptotic expansions

u = U0 (y2) + εu21 + ε2u22 + ε3u23 + ε4u24 + · · · , (2.1a)

v = ε2v21 + ε3v22 + ε4v23 + ε5v24 + · · · , (2.1b)

w = ε2w21 + ε3w22 + ε4w23 + ε5w24 + · · · , (2.1c)

p = ε2p21 + ε3p22 + ε4p23 + ε5p24 + · · · , (2.1d)

ρ = R0 (y2) + ερ21 + ε2ρ22 + ε3ρ23 + ε4ρ24 + · · · , (2.1e)

written in powers of ε for the main deck embracing most of the boundary layer. Here
all the desired functions depend on scaled variables tc, xc, y2, zc of the compressible
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triple deck which are defined through (Stewartson 1974; Smith 1982)

t = ε2tc, (2.2a)

x = 1 + ε3xc, (2.2b)

y = ε4y2, (2.2c)

z = ε3zc. (2.2d)

The first number, 2, in the subscripts relates to the main deck sandwiched between
the external, essentially inviscid, sublayer and the viscous near-wall sublayer. These
two are labelled 1 and 3 below, respectively. Within the framework of the classical
theory by Prandtl the normal-to-wall pressure gradient

∂p2

∂y2

= −κ
ρ2u

2
2

Re1/2
(2.3)

expressed in terms of density ρ2 and streamwise velocity u2 becomes as large as
O(Re−1/2) across the boundary layer provided that the curvature of the solid surface
does not vanish to zero. That implies the emergence of O(ε3) terms in expansions
(2.1a) and (2.1e) for the streamwise velocity and density as well as O(ε4) terms in
expansions (2.1b, c) for the transverse and lateral components of velocity which are
provoked by an O(ε4) term in expansion (2.1d) for the pressure. Most important of
all, the terms mentioned relate to the base steady flow rather than the perturbations
generated in the base flow. On the other hand, the terms induced by Tollmien–
Schlichting waves are of lower order in magnitude. Hence we are led to conclude that
the third-order correction terms need to be included in the triple deck for taking into
account the base steady flow on a curved surface, while the fourth-order correction
terms come into play when considering the impact of the surface curvature on the
spectral properties of the boundary-layer eigenmodes.

A comment on the form of asymptotic expansions is due at this point. They are
assumed in (2.1a–e) to proceed in powers of ε. However there are two sources giving
rise to powers of log ε in the desired solution. One of them stems from the logarithmic
behaviour of the velocity and density fields in most of the boundary layer as the
Prandtl variable y2 → 0 if the wall is kept at an arbitrary temperature (Stewartson
1974). The second source of the higher-order terms in powers of log ε originates
from the logarithmic singularity entering the main-deck expansion for the normal-
to-wall velocity as y2 → 0. Smith (1979) pointed out a technique to accommodate
the logarithmic singularity as applied to the incompressible Blasius boundary layer
slowly thickening in the streamwise direction. Since the non-parallel flow corrections
bear no relation to the problem where the normal-to-wall pressure gradient strikes a
balance with centrifugal forces maintained by the surface curvatures, the logarithmic
terms are not included into (2.1a–e).

Base steady flow

In the vicinity of any point of interest the surface can be approximated with an
accuracy sufficient for our purposes by a circular cylinder of non-dimensional radius
Rs . Inside the steady boundary layer, the pressure is expanded as

p2 = ps0 (x) + Re−1/2p
(κ)
21 (x, y2) + · · ·

where ps0(x) is the distribution over the solid surface that comes from an external
flow solution, and p

(κ)
21 designates the contribution induced by the surface curvature

κ = −1/Rs . The same superscript will be used to label other functions arising from
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the curvature effects. It follows from (2.3) that p
(κ)
21 obeys an equation

∂p
(κ)
21

∂y2

= −κ ρ20u
2
20 (2.4)

and can be found in an explicit form.

Self-induced pressure

The next term in the asymptotic expansion (2.1d) derives from the self-induced
pressure p

(κ)
24 of eigenmodes affected by centrifugal forces. At this point, (2.3) is

invoked again to give

∂p
(κ)
24

∂y2

= −κ
(
2R0U0u21 + U 2

0 ρ21

)
(2.5)

in the scaled triple-deck variables tc, xc, y2, zc introduced by (2.2a–d). As (2.5)
shows, only the first-order velocity and density fields are necessary to evaluate the
fourth-order pressure striking a balance with centrifugal forces. A complete first-order
solution is available in Stewartson (1974), Smith, Sykes & Brighton (1977) Ryzhov
(1980) and Smith (1982). It can be written as

u21 = A1 (tc, xc, zc)
dU0

dy2

, (2.6a)

v21 = −∂A1

∂xc

U0 (y2) , (2.6b)

R0 (y2) U0 (y2)
∂w21

∂xc

+
∂p21

∂zc

= 0, (2.6c)

p21 = p21 (tc, xc, zc) , (2.6d)

ρ21 = A1 (tc, xc, zc)
dR0

dy2

(2.6e)

in terms of the instantaneous displacement thickness −A1(tc, xc, zc). Inserting u21 and
ρ21 from (2.6a) and (2.6e), respectively, in (2.5) results in

p
(κ)
24 = p

(κ)
24 (tc, xc, 0, zc) − κR0 (y2) U 2

0 (y2) A1 (tc, xc, zc). (2.7)

It should be emphasized that p
(κ)
24 represents only a part of the self-induced pressure

caused by centrifugal forces in the boundary layer on a curved surface; the other
contributions to p24 from the higher-order terms entering the asymptotic expansions
(2.1a–e) are dropped, as they do not bring new physics into the problem posed. If
necessary, the contributions mentioned can be accounted for separately since all of
them are generated by independent linear processes.

With the above results in hand, the asymptotic expansion (2.1d) for the pressure
reduces to

p = ε2p21 + ε3p22 + ε4p
(κ)
23 + · · · + ε5p

(κ)
24 + · · · (2.8)

allowing us to study conceptually new destabilizing effects caused by swirling waves in
the boundary layer on a concave surface. On the assumption that M∞ < 1, expressions
for the first two terms coming from the matching with the outer inviscid flow are
presented in Stewartson (1974), Smith et al. (1977), Ryzhov (1980) and Smith (1982).
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Asymptotic expansions in the upper deck labelled 1 can be written in the form

u = 1 + ε2u11 + ε3u12 + ε4u13 + ε5u14 + · · · ,
v = ε2v11 + ε3v12 + ε4v13 + ε5v14 + · · · ,
w = ε2w11 + ε3w12 + ε4w13 + ε5w14 + · · · ,
p = ε2p11 + ε3p12 + ε4p13 + ε5p14 + · · · ,
ρ = 1 + ε2ρ11 + ε3ρ12 + ε4ρ13 + ε5ρ14 + · · · ,

analogous to (2.1a–e), the scaled triple-deck variables tc, xc, y1 = ε−1y2, zc being the
arguments of the desired functions. We skip a detailed analysis of the outer-flow
solution, restricting ourselves to final results available in the papers cited. In the
leading-order approximation, the excess pressure

p21 = p21 (tc, xc, zc) = − 1

2π

(
1 − M2

∞
)−1/2

×
∫ ∞

−∞
dξ

∫ ∞

−∞

∂2A1 (tc, ξ, ς )/∂ξ 2[(
1 − M2

∞
)−1

(xc − ξ )2 + (zc − ς )2
]1/2

dς (2.9)

does not depend on y2 in accord with (2.6d). Designating M2
0 = M2

∞R0(y2)U
2
0 (y2), we

have next

p22 = p22 (tc, xc, yc, zc)

= p22 (tc, xc, 0, zc) +

[
y2 −

∫ y2

0

M2
∞ − M2

0 (Y2)

M2
∞

dY2

]
∂2A1

∂x2
c

. (2.10)

The third-order term p̄
(κ)
23 does not enter the analysis below, and the fourth-order

term

p
(κ)
24 = p

(κ)
24 (tc, xc, y2, zc) (2.11)

as specified by (2.7). An arbitrary function

p
(κ)
24 (tc, xc, 0, zc) = κA1 (tc, xc, zc)

derives from the fourth-order matching of (2.8) with the outer-flow solution, whence

p
(κ)
24 = κ

[
1 − R0 (y2) U 2

0 (y2)
]
A1 (tc, xc, zc) . (2.12)

The streamwise and normal-to-wall components of velocity, u and v, as well as
the density distribution, ρ, are not required to be evaluated across the main deck
to the same degree of accuracy. They may be taken in the form (2.6a), (2.6b) and
(2.6e), respectively, because the higher-order terms in their expansions do not affect
the curvature-induced contribution (2.11) to the pressure. The lateral component of
velocity, w, contains, in view of (2.6c), an additional term associated with the surface
curvature. More specifically, we have

R0 (y2) U0 (y2)
∂w

∂xc

= −ε2 ∂p21

∂zc

· · · − ε5κ
[
1 − R0 (y2) U 2

0 (y2)
] ∂A1

∂zc

+ · · · (2.13)

on account of (2.12). That means the emergence of weak curvature-produced motion
in the boundary layer in the direction orthogonal to the oncoming stream.

Now an expression for the excess pressure to balance centrifugal forces of different
origin can be easily written down. To this end, let y2 → ∞ in (2.10), leading to an
arbitrary function

p22 (tc, xc, 0, zc) = p12 (tc, xc, 0, zc) +
∂2A1

∂x2
c

∫ ∞

0

M2
∞ − M2

0 (y2)

M2
∞

dy2.
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By adding two higher-order contributions to the leading-order term p21 in (2.9) we
come to

p (tc, xc, 0, zc) = ε2p21 (tc, xc, zc) + ε3D(xx)

∂2A1

∂x2
c

+ · · · + ε5κA1 (tc, xc, zc) + · · · (2.14)

where the integral

D(xx) =

∫ ∞

0

M2
∞ − M2

0 (y2)

M2
∞

dy2 (2.15)

varies with the heat-conduction regime across the body surface. The physical meaning
of the curvature-related terms here are simple. Since A1 represents the instantaneous
displacement thickness, the second derivative ∂2A1/∂x2

c gives the inherent curvature
of bending streamlines in the main deck with sufficient accuracy. The product κA1

arises from the prescribed curvature of a solid surface. Thus, the curvature effects
are different depending on whether the normal-to-wall pressure gradient stems from
dynamically shaping streamlines so as to balance naturally produced centrifugal forces
or the same pressure gradient has to strike a balance with centrifugal forces fixed by
surface geometry. The aforementioned idea by Görtler (1955) about the equivalence of
vortical flows with concave streamlines should be refined depending on environmental
conditions.

3. Composite asymptotic model
It is easily seen that no curvature effects need to be accounted for to within the

accuracy adopted when deriving the Prandtl equations controlling the velocity field
in the thin viscous near-wall sublayer 3 where yc3 = εy2. The error introduced by
omitting the curvature-related terms in the original Navier–Stokes equations falls
beyond the scope of the asymptotic approach under examination. For example,
applying the normal-to-wall distance yc3 to recast the y-momentum conservation law
in the form (2.3) we are led to an estimate

∂p

∂yc3

= −ε7κR0 (0) u2
31(tc, xc, yc3, zc),

u31(tc, xc, yc3, zc) being the leading-order term in an expansion

u = εu31 + ε2u32 + · · · (3.1)

for the streamwise velocity component. Analogous results follow from the continuity
and the other two Navier–Stokes equations.

Let us exploit the standard affine transformation of the triple-deck theory. Then

tc = C1/4τ−3/2
w

(
1 − M2

∞
)−1/4

(
T ∗

w

T ∗
∞

)
t, (3.2a)

xc = C3/8τ−5/4
w

(
1 − M2

∞
)−3/8

(
T ∗

w

T ∗
∞

)3/2

x, (3.2b)

yc3 = C5/8τ−3/4
w

(
1 − M2

∞
)−1/8

(
T ∗

w

T ∗
∞

)3/2

y, (3.2c)

zc = C3/8τ−5/4
w

(
1 − M2

∞
)−3/8

(
T ∗

w

T ∗
∞

)3/2

z (3.2d)
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apply to normalize the time and spatial coordinates (Stewartson 1974; Smith 1982),
the wall shear stress τw , being defined by (1.3) through the Chapman constant C and
the ratio of the wall temperature T ∗

w to the ambient temperature T ∗
∞. To comply with

(3.1), the corresponding components of velocity are introduced by means of

u = εC1/8τ 1/4
w

(
1 − M2

∞
)−1/8

(
T ∗

w

T ∗
∞

)1/2

(u31 + · · ·) , (3.3a)

v = ε3C3/8τ 3/4
w

(
1 − M2

∞
)1/8

(
T ∗

w

T ∗
∞

)1/2

(v31 + · · ·) , (3.3b)

w = εC1/8τ 1/4
w

(
1 − M2

∞
)−1/8

(
T ∗

w

T ∗
∞

)1/2

(w31 + · · ·) , (3.3c)

whereas the excess pressure expands as

p = ε2C1/4τ 1/2
w

(
1 − M2

∞
)−1/4

(p31 + · · ·) (3.4)

in accord with both O(ε2)-scalings adopted for the upper and main decks. The density
can be taken simply as ρ = R0(0) in the first approximation. As a consequence, the
system of Prandtl equations

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.5a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

∂2u

∂y2
, (3.5b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

∂2w

∂y2
(3.5c)

for an unsteady incompressible boundary layer comes into operation. The velocity
field varying in three directions derives from swirling waves incorporating the Görtler
vortical eigenmodes. To simplify notation, the subscript 3 is omitted from labelling
the normal-to-wall distance and desired functions.

The matching of self-induced pressures in an intermediate domain where the main
and lower decks overlap provides the interaction law

p = − 1

2π

∫ ∞

−∞
dξ

∫ ∞

−∞

∂2A/∂ξ 2[ (
1 − M2

∞
)−1

(x − ξ )2 + (z − ς )2
]1/2

dς + εD0

∂2A

∂x2
+ ε3κDA

(3.6)
with the instantaneous displacement thickness −A1 transformed through

A1 = C5/8τ−3/4
w

(
1 − M2

∞
)−1/8

(
T ∗

w

T ∗
∞

)3/2

A. (3.7)

Two similarity parameters

D0 = D(xx)C
−3/8τ 5/4

w

(
1 − M2

∞
)7/8

(
T ∗

w

T ∗
∞

)−3/2

, (3.8a)

D = C3/8τ−5/4
w

(
1 − M2

∞
)1/8

(
T ∗

w

T ∗
∞

)3/2

, (3.8b)

depend on the nature of centrifugal forces created either by the curvature ∂2A/∂x2

of dynamically shaping streamlines or by the fixed curvature κ of a solid surface.
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The O(ε)-term involving the second derivative ∂2A/∂x2 suggests that the shorter the
distance within which naturally bending streamlines deviate from their initial location
is, the more significant the contribution of centrifugal forces to a balance with the
self-induced pressure becomes. On the contrary, with growing deviation distance the
magnitude of this contribution sharply decreases. The O(ε3)-term which stems from
the fixed curvature κ of the solid surface does not vary with the scaled distance at
all. Clearly, the curvature effects under discussion induce two separate side bands of
wavelengths with the Tollmien–Schlichting oscillation spectrum in between.

Limit and boundary conditions are required at this stage to make the formulation
of the problem complete. The limit conditions at the upper part y → ∞ of the
near-wall sublayer are obtainable from matching with a solution for most of the
boundary layer. Calculating values of the first-order functions in (2.6a–e) we have the
limit conditions

u − y = A(t, x, z) + O(y−1), (3.9a)

w = O(y−1) (3.9b)

as y → ∞, to be imposed on the streamwise and lateral components of the velocity
vector. This crude approximation is sufficient for our purposes. If necessary, the
O(y−1)-term in (3.9a) can be cast in an explicit form by using the second-order
solution for the main deck available in Stewartson (1974) and Ryzhov (1980). An
analogous O(y−1)-term in (3.9b) comes directly from (2.6c), whereas (2.13) applies to
provide the curvature-related correction. The no-slip conditions are

u = v = w = 0 at y = 0 (3.10)

if neither local humps nor dents are present on a smooth surface.
The two spectral side bands need to be examined closely. The term with ∂2A/∂x2

on the right-hand side of (3.6) attains the same order in magnitude as the integral
term when the triple-deck distance x shrinks to x =O(ε). Otherwise the second-
order term remains much smaller than the leading-order one. However oscillations
having a typical wavelength λx =O(ε) damp out in time and space since they
fall into a parameter domain located far beyond the upper branch of the neutral
stability curve. A typical wavelength of the upper branch eigenmodes is estimated as
λx =O(Re−9/20) or λx =O(ε18/5) in terms of ε (Bodonyi & Smith 1981). Accordingly,
the side band which is associated with the curvature effects created by dynamically
shaping streamlines appears to be absorbed into the upper-branch spectrum of eigen-
frequencies and wavenumbers. Therefore, the second-order term on the right-hand
side of (3.6) is discarded to reduce the interaction law to

p = − 1

2π

∫ ∞

−∞
dξ

∫ ∞

−∞

∂2A/∂ξ 2[(
1 − M2

∞
)−1

(x − ξ )2 + (z − ς )2
]1/2

dς + ε3κDA. (3.11)

The spectral content of the other side band related to the spiral-type Görtler vortices
comes from a more delicate analysis, given below.

Criss-cross interaction

The Görtler vortical periodic structures are known to be tightly packed and elongated
in the streamwise direction (Saric 1994). Let us exploit this observation in an attempt
to further simplify the interaction law. To be specific we assume that

x =
xG

δx

, (3.12a)

z = δzzG (3.12b)
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where δx/ε → 0, δz/ε → ∞ as ε → 0 and xG, zG are both O(1). This two-parameter
scaling agrees with that introduced by Rozhko & Ruban (1987) and shown by
Timoshin (1990) and Denier et al. (1991) to be characteristic of the triple-deck-type
asymptotic regime. The starting point is to evaluate the z-derivative

∂I

∂z
= − 1

2π

∂2

∂x2

∫ ∞

−∞
(ς − z) dς

∫ ∞

−∞

A(t, ξ, ς)[(
1 − M2

∞
)−1

(x − ξ )2 + (z − ς )2
]3/2

dξ (3.13)

of the integral term I (x, z) on the right-hand side of (3.11). A change to new variables

xG

δx

− ξ = ξ ′, δzzG − ς = ς ′

proves to be crucial for deriving a simplified version of (3.13). If ξ ′ = O(1) then the
integrand

A(t, xG/δx − ξ ′, δzzG − ς ′)[(
1 − M2

∞
)−1

ξ ′2 + ς ′2
]3/2

→ A(t, xG/δx, δzzG − ς ′)[(
1 − M2

∞
)−1

ξ ′2 + ς ′2
]3/2

, (3.14)

whereas for xG/δx − ξ ′ = O(1) and ξ ′ = O(xG/δx) → ∞ we have

A(t, xG/δx − ξ ′, δzzG − ς ′)[(
1 − M2

∞
)−1

ξ ′2 + ς ′2
]3/2

→ 0. (3.15)

Hence (3.13) reduces to approximately

∂I

∂z
=

1

π

(
1 − M2

∞
) 1

2

∫ ∞

−∞

∂2A(t, x, ς )/∂x2

z − ς
dς (3.16)

with a consequence that the interaction law becomes

∂p

∂z
=

1

π

(
1 − M2

∞
) 1

2

∫ ∞

−∞

∂2A(t, x, ς )/∂x2

z − ς
dς + ε3κD

∂A

∂z
(3.17)

where the similarity parameter D obeys (3.8b).
It follows from (3.14) and (3.15) that the physical meaning of replacing the double

integral (3.13) with the single integral (3.16) is that the contribution from the Görtler
vortical range of reference lengths prevails over the contribution coming from the
Tollmien–Schlichting wave scales in the viscous/inviscid interaction regime under
consideration. As has been mentioned, this regime differs from the wave/vortex
interactions in Hall & Smith (1988, 1989, 1991) where the surface curvature κ can
play no role at all. The change in the interaction law will be shown below to
lead to far-reaching conclusions. The Cauchy problem for the system of linearized
Prandtl equations (3.5a–c) supplemented with the interaction law (3.17) proves to be
ill-posed. Evidently, this is an outcome of ignoring the pressure variations induced
through viscous/inviscid interaction in the Tollmien–Schlichting spectral range that
embraces all characteristic wavelengths intrinsic to the swirling waves on curved
surfaces. For steady incompressible boundary layers, a simplified version of the
interaction law, analogous to (3.17), has been introduced by Rozhko & Ruban
(1987). Ruban (1990a, b) commented on the ill-posedness of the Cauchy problem
formulated within the framework of this mathematical model. Specifically, the model
applies to disturbance patterns confined to the Görtler vortical side band of eigen-
frequencies and wavelengths. The ill-posedness of the Cauchy problem originates
from an unrealistic growth of the amplitude amplification rate with large streamwise



406 O. S. Ryzhov and E. V. Bogdanova-Ryzhova

wavenumbers in the Tollmien–Schlichting spectral range (see below). On the strength
of (3.12a, b), an estimate

δ2
xδz = O(ε3) (3.18)

determines the scaling of unsteady vortical structures. One more scaling condition to
be imposed on spatial variables is necessary to fix δx and δz.

4. Spectra of free oscillations
Since the Prandtl equations are nonlinear, they allow us in principle to study

wave motion of finite amplitude. However, usually the boundary-layer receptivity to
external excitation and an earlier stage of disturbance development mean a linear
process which is brought about by a weak perturbing source. Setting

(u − y, v, w, p, A) = a(ũ, ṽ, w̃, p̃, Ã), a → 0, (4.1)

let us simplify the Prandtl equations (3.5a–c) as well as the limit conditions (3.9a, b)
and no-slip conditions (3.10). To cover the whole spectrum of swirling waves on
a concave surface, the interaction law is taken in the form (3.11) rather than its
simplified version (3.17).

Dispersion relation

A class of travelling-wave-type solutions is defined as

(ũ, ṽ, w̃, p̃, Ã) = eωt+i(kx+mz)[uc(y), vc(y), wc(y), pc, Ac]. (4.2)

Substitution of (4.1) and (4.2) into the system of linearized Prandtl equations results
in a set of homogeneous ordinary differential equations

dvc

dy
= −i (kuc + mwc) , (4.3a)

d2uc

dy2
= (ω + iky) uc + vc + ikpc, (4.3b)

d2wc

dy2
= (ω + iky) wc + impc (4.3c)

for the complex-valued functions uc, vc, wc. The limit conditions (3.9a, b) at infinity
lead to

uc → Ac, (4.4a)

wc → 0, (4.4b)

as y → ∞. The first linear algebraic equation

pc =
{
k2

[
k2 +

(
1 − M2

∞
)−1

m2
]−1/2

+ ε3κD
}
Ac (4.5)

to connect pc entering (4.3b, c) and Ac from the right-hand side of (4.4a) comes from
the interaction law (3.11) with D given in (3.8b). The no-slip conditions (3.10) become

uc = vc = wc = 0 at y = 0. (4.6)

Thus we are led to an eigenvalue problem that specifies the frequency and wavenumber
spectra of free oscillations.

The standard technique (see for example Ryzhov & Terent’ev 1986, 1998) which
relies on introducing a new independent variable

Y = Ω + i1/3k1/3y, (4.7a)

Ω = i−2/3ωk−2/3 (4.7b)



Instabilities in boundary-layer flows on a curved surface 407

and a new desired function F = kuc+mvc, serves to solve the eigenvalue problem under
consideration. It should be mentioned that a cut along the positive imaginary semi-axis
is drawn in the complex k-plane which isolates a single-valued branch of the function
k1/3 by means of − 3

2
π < arg(k) < 1

2
π with a consequence that − 1

3
π < arg(Y ) < 1

3
π as

y → ∞.
It is easily seen that F satisfies precisely the same equation that controls the

propagation of the normal Tollmien–Schlichting waves in a Blasius boundary layer.
This property is the essence of a transformation by Squire (1933) which remains valid
asymptotically, as ε → 0, even for swirling waves with an inherent component of
Görtler vortices caused by centrifugal forces. Applying the limit condition for F as
|Y | → ∞ that follows from (4.4a, b) yields the second linear algebraic equation

pc = i−1/3k5/3(k2 + m2)−1Φ(Ω)Ac (4.8)

that connects pc and Ac. Here the Airy function Ai(Ω) is used to define a function

Φ =
dAi (Ω)

dY
[I (Ω)]−1, (4.9a)

I =

∫ ∞

Ω

Ai (Y ) dY (4.9b)

widely in use in the triple-deck theory. Eliminating the ratio pc/Ac between (4.5) and
(4.8) we arrive at the dispersion relation

Φ (Ω) = Q(k, m; M∞, ε, κD). (4.10)

The right-hand side

Q = i1/3 k2 + m2

k5/3

{
k2[

k2 +
(
1 − M2

∞
)−1

m2
]1/2

+ ε3κD

}
(4.11)

depends on both wavenumbers k and m, the Mach number M∞, the Reynolds number
Re = ε−1/8 and the surface curvature κ multiplied by D.

The product ε3κD is a characteristic feature of the composite asymptotic model
embracing both the Tollmien–Schlichting waves and spiral-type Görtler vortices.
However, the key property of Q cast in the form (Ryzhov & Terent’ev 1986, 1998)

arg [Q (k, m; M∞, ε, κD)] =

{
1
6
π if arg (k) = 0,

− 1
6
π if arg (k) = −π

(4.12)

remains valid no matter what the sign of the real lateral wavenumber m is and which
values ε and M∞ < 1 take. A constraint κ > 0 specifying a concave surface prevents
the expression in the braces from passing through zero and taking on negative
values. Experimentally, unstable Görtler vortices are observed on concave surfaces; a
short discussion of their evolution over convex walls is available in Floryan (1991).
Within the framework of the asymptotic analysis, the amplitude attenuation rate
Re[ω1,vort (k)] < 0 for vortical part of disturbances on a convex surface with κ < 0.

Side band

In compliance with (3.12a, b), k → 0 and m → ∞ in the spectral range of spiral-type
Görtler vortices. In view of (4.11), it follows that k1/3m = O(1) or δ1/3

x /δz = O(1) as ε →
0. Combined with (3.18) the last order-of-magnitude estimate leads to the rescaling
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δx = O(ε9/7), δz =O(ε3/7) of the streamwise and lateral dimensions of unsteady vortical
structures. As it was claimed aboved, the ratio δ2

x/ε
2 = O(ε4/7) tends to zero with

ε → 0. From (4.7b), the corresponding estimate for ω becomes O(ε6/7). Thus the
spiral Görtler vortices on a concave surface are born in the spectral side band

ω = ε6/7 ωG = Re−3/28 ωG ≈ 0.25 ωG, (4.13a)

k = ε9/7 kG = Re−9/56 kG ≈ 0.12 kG, (4.13b)

m = ε−3/7 mG = Re3/56 mG ≈ 2.02 mG (4.13c)

of eigen-frequencies and wavenumbers labelled G, where the correction term in the
braces on the right-hand side of (4.11) attains the same order in magnitude as the
leading-order term for typical transition conditions with Re ≈ 5 × 105. Transformed
to new spectral parameters, the expression for Q becomes

Q = i1/3 Re−3/7k2
G + m2

G

k
5/3
G

{
k2

G[
Re−3/7k2

G +
(
1 − M2

∞
)−1

m2
G

]1/2
+ κD

}
. (4.14)

Here both terms play an equal role in determining the boundary layer stability.
By virtue of (4.7b), the auxiliary combination Ω remains invariant under the affine
transformation (4.13a, b), i.e.

Ω = ΩG = i−2/3ωGk
−2/3
G .

Both O(Re−3/7)-terms need to be kept in (4.14) to render the Cauchy problem well-
posed in a linear approximation. For incompressible flows, an analogous dispersion
relation was proposed in an upublished paper by Ruban, Türkyilmazoglu & Gajjar
(1998) to remove the ill-posedness of the Cauchy problem from the criss-cross
interaction scheme. Based on this approach, the authors came to the conclusion
that no upstream influence occurred at large times when the wave packets became
fully developed and were swept downstream.

Rescaling of the eigen-frequencies and wavenumbers fixed by (4.13a–c) implies a
change to new independent variables

t = ε−6/7tG = Re3/28tG, (4.15a)

x = ε−9/7xG = Re9/56xG, (4.15b)

z = ε3/7zG = Re−3/56zG (4.15c)

in place of the canonical triple-deck time (3.2a) and space coordinates (3.2b, d)
within the spectral side band typical of spiral-type vortices. Hence it follows that
with the Reynolds number Re ≈ 5 × 105 characteristic of transition environments
the streamwise dimensions of the Görtler vortex is about ten times as large as the
characteristic length of a Tollmien–Schlichting wave. On the other hand, the Görtler
vortices are closely spaced and the lateral extent of a single vortex is only one half the
width of a three-dimensional Tollmien–Schlichting wave. In line with experimental
evidence Saric (1994), the spiral-type vortices form elongated tightly packed structures
on a concave surface. Rescaling of the triple-deck normal-to-wall distance (3.2c) in
line with (4.15a–c) gives

y = ε−3/7yG = Re3/56yG ≈ 2.0yG. (4.16)
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The velocity field

u = ε−3/7uG = Re3/56uG,

v = ε3/7vG = Re−3/56vG,

w = ε9/7wG = Re−9/56wG

created by the spiral-type vortical disturbances can be easily found by using the
governing equations (3.5a–c). An assessment of the magnitude of the self-induced
pressure requires some care. From the z-momentum equation we deduce that

p = 0(w2) = ε18/7pG = Re−9/28pG. (4.17)

Then the continuity equation (3.5a) and the z-momentum equation (3.5c) remain intact
under the transformation to new variables. However, the x-momentum equation (3.5b)
becomes

∂uG

∂tG
+ uG

∂uG

∂xG

+ vG

∂uG

∂yG

+ wG

∂uG

∂zG

= −Re−3/7 ∂pG

∂xG

+
∂2uG

∂y2
G

where an O(Re−3/7) term arises from the streamwise pressure gradient and drops out
in the theory of criss-cross interaction (Rozhko & Ruban 1987; Ruban 1990a, b). A
change to the new variables shows that no curvature effects appear in the Prandtl
equations controlling the fluid motion in the thin viscous near-wall sublayer. The
curvature effects prove to be negligible in the limit of reference times and wavelengths
determining the evolution of vortical structures. This limiting case lends credence
to the composite model where the curvature-related term ε3κDA is included in the
interaction law (3.11) but no additional terms are present in the Prandtl equations.
Also, the streamwise pressure gradient becomes O(Re−3/7) small when passing to
the limit of spiral Görtler vortices in the x-momentum equation. In view of (4.17),
the self-induced pressure drops to O(Re−9/28) ≈ 0.015 of its original magnitude
in the Tollmien–Schlichting spectral range. The Tollmien–Schlichting waves appear
as large-amplitude short-scaled disturbances propagating against the background of
much weaker long-scaled vortical structures.

5. Dispersion curves
Before we proceed to elucidate the behaviour of the dispersion curves controlling

the stability properties of the wave/vortex disturbance patterns, let us perform one
more affine transformation

ωG → (κD)2/7 ωG, (5.1a)

kG → (κD)3/7 kG, (5.1b)

mG → (κD)−1/7 mG. (5.1c)

The auxiliary variable ΩG remains invariant whereas the right-hand side Q of the
dispersion relation reduces to the form

Q = i1/3 DGk2
G + m2

G

k
5/3
G

{
k2

G[
DGk2

G +
(
1 − M2

∞
)−1

m2
G

]1/2
+ 1

}
(5.2)
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where the Reynolds number Re and the product κD are combined in a similarity
parameter

DG = Re−3/7 (κD)8/7 = D8/7

(
Re

κ8/3

)−3/7

. (5.3)

It is worth noting that this parameter incorporating Re and κ is in marked contrast
to the Görtler number defined in (1.2).

Complex ΩG-plane

We are now in a position to describe new properties of conceptual significance
that arise from coupling the two eigenmodes of different physical nature. Some
preliminary results have been reported in Ryzhov (2003) and Ryzhov & Bogdanova-
Ryzhova (2003). An analysis of the dispersion curves in the auxiliary ΩG-plane is
pertinent first, because it allows us to predict the existence of a new eigenmode
capable of driving disturbances upstream, against the direction of an oncoming
boundary layer. We begin by noting that Q(k) = i1/3k1/3|k| is the right-hand side of
the dispersion relation (4.10) for normal Tollmien–Schlichting waves in the Blasius
boundary layer (Ryzhov & Terent’ev 1986, 1998). Evidently arg[Q(kG, mG; M∞, DG)]
equals arg[Q(k, m; M∞, ε, κD)] determined by (4.12) for both arg(kG) = arg(k) = 0 and
arg(kG) = arg(k) = − π. Hence arg[Q(kG, mG; M∞, DG)] coincides with the argument
of Q(k) no matter what the sign of the lateral wavenumber mG is and which values
M∞ < 1 and DG take. This provides a clue to understanding how the dispersion-
relation properties of these two-dimensional disturbances can be exploited to study
the more general case of interest. In what follows, mG =mG0 is kept fixed.

With some specific value of kG, the dispersion-relation roots form, as in the two-
dimensional case, a countable set of image points in the ΩG-plane. When kG varies
taking real values, these points move along trajectories which constitute a collection
of dispersion curves. Figure 1 shows a typical map of the dispersion relation (4.10)
with right-hand side (4.11) or, alternatively, (5.2) onto the complex ΩG-plane obtained
from the corresponding plot of the trajectories for normal Tollmien–Schlichting waves
in the Blasius boundary layer. However, Q in (5.2) does not vanish to zero in the
limit kG → 0 unless mG0 = 0. Therefore, none of the image points approach the
real negative semi-axis in figure 1. On the contrary, they remain separated by finite
distances from the points Ωdj , j = 1, 2, . . . , the roots of the equation dAi(Ωdj )/dY =0.
This distinction leads to dramatic alterations in the boundary-layer response to
infinitesimal perturbations which come from the destabilizing effects of centrifugal
forces supported by the surface curvature.

Our concern is primarily with the first dispersion curve ΩG1(kG, mG0; M∞, DG). The
three parameters mG0; M∞, DG are omitted below from the notation of the dispersion
curves in all complex planes. Consider in more detail the image-point motion along
ΩG1(kG) provided that kG takes positive as well as negative real values. By virtue of
(4.12), the asymptotic behaviour of ΩG1(kG) as kG → −∞ is established by

ΩG1 → ∞ exp
(

5
6
πi

)
(5.4)

analogous to the first dispersion curve for normal Tollmien–Schlichting waves in the
Blasius boundary layer, no matter how small the parameter DG �= 0 is. An increase
in kG < 0 leads to downward motion along the upper branch of the curve to a certain
limiting point Ω

(−)
G1 lim whose position varies with the magnitude of mG0 and also

depends on M∞ and DG. Upon reaching the limiting point, the motion along the
first dispersion curve changes to the opposite direction and the image point starts
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Figure 1. Auxiliary ΩG-plane with end-points Ω
(±)
G1 lim which bring about absolute instability

in the streamwise direction. The complex-valued variable Ω =ΩG is an invariant.

climbing upwards. As a result, (5.4) again comes into operation as kG → −0. The
passage through kG = 0 is marked by a sudden jump of the image point onto the
branch of the dispersion curve located symmetrically about the real axis in the lower
half-plane of the ΩG-plane, the corresponding asymptotics being

ΩG1 → ∞ exp

(
−5

6
πi

)
(5.5)

as kG → +0. A further increase in kG > 0 results in upward motion along the lower
branch of the curve to the limiting point Ω

(+)
G1 lim which is a mirror image of Ω

(−)
G1 lim.

Upon reaching Ω
(+)
G1 lim and making a sharp downward turn here the image point

proceeds along the same branch in the opposite direction to complete its motion with
the asymptote (5.5), as kG → ∞. The most important feature of this map is that the
image point does not attain the first zero Ωd1 of the derivative of the Airy function.
In consequence, the first dispersion curve divides into two branches. Both branches
are covered twice by the image point in its forward and reverse motions. Only in
the case of two-dimensional oscillations with mG0 = 0 do the two isolated branches
merge at Ωd1 to produce a double point. The motion of the image point from Ω

(−)
G1 lim

to upward infinity and from Ω
(+)
G1 lim to downward infinity implies the formation of a

new eigenmode endowed with unusual properties.
In line with conventional practice, the conclusion about the stability of the boundary

layer on a concave surface rests upon the sign of Re(ωG1) in the definition (4.2) of
travelling waves. Neutral oscillations separating stable and unstable oscillations are
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prescribed by Re(ωG1) = 0, whence

arg(ΩG∗) =

{
− 5

6
π, if arg (kG∗) = 0, arg (ωG∗) = − 1

2
π,

5
6
π, if arg (kG∗) = −π, arg (ωG∗) = 1

2

where an asterisk in the subscript relates to critical values of the frequency and
wavenumber. Accordingly, a domain of unstable swirling waves is bounded in the
complex ΩG-plane by conditions

− 5
6
π < arg (ΩG) < 1

6
π, if arg (kG) = 0, (5.6)

− 1
6
π < arg (ΩG) < 5

6
π, if arg (kG) = −π. (5.7)

The rays R+ and R− shown in figure 1 by dotted lines are fixed by arg(ΩG) = − 5
6
π,

arg(kG) = 0 and arg(ΩG) = 5
6
π, arg(kG) = −π. Both rays can cross only the first

dispersion curve ΩG1(kG). Evidently, the points of possible intersections correspond to
neutral waves of the temporal stability approach. However, whether these intersections
actually take place with a given set of values of mG0; M∞, DG depends on the location
of the limiting points Ω

(±)
G1 lim on the upper and lower branches of the first dispersion

curve ΩG1(kG). If they are positioned inside a sector shaped by the rays R+ and R−,
two different values of the neutral frequency come into play. On the other hand, when
the limiting points fall outside this sector, there is no neutral frequency at all. A single
value of the neutral frequency occurs with the proviso that Ω

(+)
G1 lim coincides with the

point where R+ crosses the lower branch of the first dispersion curve and Ω
(−)
G1 lim gives

the point of intersection of R− with the upper branch of the same curve. This is just
the case depicted in figure 1. With the limiting point lying outside the sector between
R+ and R−, all types of swirling waves specified by the lateral wavenumber mG0 and
the values of similarity parameters M∞ and DG are unstable.

Complex ωG-plane for small mG0

Let us consider some important repercussions of the fact that each of the branches
of ΩG1(kG) is covered twice by the image point in its motion on an infinite interval
−∞ <kG < ∞. In order to gain insight into principal features of the dispersion curves
in the complex frequency plane ωG we start from the two-term expansion

Φ (ΩG) ∼ −ΩG − Ω
− 1

2

G + · · · as |ΩG| → ∞

in the auxiliaryΩG-plane that follows from (4.9a) and derive an expression

ωG1 ∼ −i
DGk2

G + m2
G0

kG

{
k2

G[
DGk2

G +
(
1 − M2

∞
)−1

m2
G0

]1/2
+ 1

}

+

√
2

2
[1 − isign (kG)]

|kG|3/2(
DGk2

G + m2
G0

)1/2

×
{

k2
G[

DGk2
G +

(
1 − M2

∞
)−1

m2
G0

]1/2
+ 1

}− 1
2

+ · · · (5.8)

determining the asymptotic behaviour of ωG1(kG) in two limits, as kG → ±∞ and
kG → ±0.



Instabilities in boundary-layer flows on a curved surface 413

If kG → ±∞, (5.8) converges to

Re[ωG1 (kG)] →
√

2

2
D

−1/4
G (5.9)

with the similarity parameter DG entering the right-hand side. This limit specifies the
Tollmien–Schlichting spectral range of swirling waves. Returning from ωG and kG to
ω and k by means of (4.13a), (5.1a) and (4.13b), (5.1b), respectively, and taking into
account the definition of DG in (5.3) the limit

Re [ω1 (k)] →
√

2

2
as |k| → ∞

is retrieved in the canonical triple-deck variables, independent of any parameter
(Ryzhov & Terent’ev 1986, 1998). It is instructive to obtain the amplitude amplification
rate within the framework of the simplified model controlled by the interaction law
(3.17) and the dispersion relation (4.10) where the right-hand side

Q = i1/3 m2
G0

k
5/3
G

[(
1 − M2

∞
)1/2 k2

G

|mG0| + 1

]
(5.10)

derives from (4.14) provided that DG equals identically zero. Then we arrive at (Ruban
1990a, b)

Re[ωG1 (kG)] →
√

2

2

(
1 − M2

∞
)−1/4

(
|kG|

|mG0|

)1/2

as kG → ±∞. (5.11)

It is this unrealistically large growth rate which makes the Cauchy problem ill-posed,
as it was mentioned above.

In the second limit kG → ±0, (5.8) yields

Re[ωG1 (kG)] →
√

2

2

|kG|3/2

|mG0| (5.12)

showing that at the triple-deck scale the amplitude amplification rate

Re[ω1 (k)] →
√

2

2
Re3/16 (κD)−1/2 |k|3/2

|m0| as k → 0

indefinitely increases with Re → ∞. The same results hold in the context of the simpli-
fied model governed by (5.10). Note that the integral terms responsible for the pressure
variations induced in both models by viscous/inviscid interaction become negligible
to leading order for small kG. The excess pressure comes solely from the surface curva-
ture effects in the main deck.

The most important inference to be drawn from the asymptotic study is that the
first dispersion curve divides in the complex ωG-plane into two separate branches
and each branch consists of two segments or lobes. From (5.9), the right-hand
lobes pass, as kG → ±∞, a finite distance from the imaginary axis and generate in
this limit the Tollmien–Schlichting eigenmode. In view of (5.12), both left-hand lobes
asymptotically tend to the imaginary axis with kG → 0 thereby giving rise to a
new eigenmode. The direction in which the image point moves along the left-hand
lobes gives the new eigenmode an unusual property. The derivative d Im(ωG1)/dkG > 0
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Figure 2. Two isolated branches of the first dispersion curve in the plane of complex
frequencies for mG0 �= 0. Each branch consists of two segments (lobes). (b) An enlargement of
(a) close to the origin.

along the left-hand lobes, whereas dIm(ωG1)/dkG < 0 at each point of the right-hand
lobes.

Let us assume the Mach number to be equal to zero for the time being. This
assumption restricts the analysis to incompressible boundary layers but allows us
to focus on the inherent characteristics of swirling waves. With the assumption that
M∞ = 0, the single similarity parameter DG enters expression (5.2) for Q.

Obviously the shape of the first dispersion curve strongly depends on the lateral
wavenumber mG0. For all mG0 �= 0 the first dispersion curve has two different
asymptotes stretching to infinity in the lower and upper half-planes of the complex
ωG-plane. Both asymptotes are parallel to the imaginary axis and spaced ( 1

2

√
2)D−1/4

G

apart. Figure 2(a) presents a typical example of the first dispersion curves for
mG0 = 0.015, 0.1, 0.2 and 0.3. A domain close to the origin is drawn in figure 2(b) on
the enlarged scale for the same values of the lateral wavenumber and ε3κD =0.0326
which corresponds to DG = (ε3κD)8/7 = 0.02. The two symmetrically positioned
branches of the first dispersion curve become separated, and in addition, neither
of them meets the real axis. Each branch is made up of two segments connected
with a loop into a single curve. The lower branch, starting from Im(ωG1) → −∞ and
Re(ωG1) prescribed by (5.9) as kG → ∞, first climbs steeply, then turns not far from the
origin and goes downwards to terminate as (5.12) with kG → +0. The upper branch,
coming from Im(ωG1) → ∞ and the same limit (5.9) of Re(ωG1) as kG → −∞, is a
mirror image of the lower branch, obtainable with negative values of kG. The global
and local maxima of Re(ωG1), labelled g and l, respectively, feature the right-hand
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lobe of each branch. They induce two strong signals which merge into a single highly
modulated disturbance sweeping downstream since d Im(ωG1)/dkG < 0 at every point
on the right-hand lobes. The disturbance frequencies and wavenumbers fall within
the Tollmien–Schlichting spectral range.

A loop connecting both segments has a portion with a local negative minimum of
Re(ωG1) in the left half-plane of the complex ωG-plane. Disturbances associated with
this portion are stable, except for the end points, which lie on the imaginary axis and
generate neutral oscillations. Thus, in line with the above analysis of the auxiliary
ΩG-plane, two different values of the neutral frequency come into play in swirling
waves with small spanwise wavenumbers. One of these values does not appreciably
deviate from the neutral frequency inherent in the Tollmien–Schlichting eigenmodes.
The other, much lower value stems from the wave/vortex interaction capable of
providing support to neutrally stable disturbances. Both values come closer as the
lateral wavenumber mG0 increases.

Upon crossing the imaginary axis at the second neutral point, the loop enters the
right half-plane Re(ωG) > 0, where it gives rise to unstable vortical eigenmodes. A
small positive peak d of Re(ωG1) gradually develops in the form of the loop close to
the origin. This peak triggers a relatively weak signal consisting of slightly modulated
oscillation cycles. The signal advances upstream, against the direction of the oncoming
boundary layer since d Im(ωG1)/dkG > 0 along the whole length of the left-hand lobes
of the first dispersion curve extending to infinity. So, the loop in the shape of either
of the two branches making up the first dispersion curve in the complex frequency
plane can be regarded as an outcome of the wave/vortex eigenmodes’ interaction.

Variations with lateral wavenumber

Distortions in the shape of the first dispersion curve which have already surfaced in
the above scrutiny of ωG1(kG) in the immediate vicinity of the origin become much
larger with values of mG0 continuously increasing.

The plot in figure 3 computed with mG0 = 0.5 is typical of the range 0.3 <mG0 < 0.65.
There still exists a portion of both branches of the first dispersion curve which is
situated in the left half-plane of the complex ωG-plane with its end points on
the imaginary axis. Thus, neutral oscillations persist and can have two different
frequencies. However, this portion becomes shorter and has a weaker local negative
minimum of Re(ωG1) until the image point in its motion along the first dispersion
curve ΩG1(kG) in the auxiliary ΩG-plane crosses one of the rays R+ or R−. The
initially small positive peak d of Re(ωG1), occurring behind the second neutral point
when we proceed along the left-hand lobe of either of the two branches to the point
at infinity with Re(ωG1) → 0 as kG → ±0, continues to amplify but remains more
than ten times smaller than the global maximum of Re(ωG1) on the right-hand lobe.

Figure 4 where mG0 = 0.9 presents the evolution of these tendencies. The first
dispersion curve ωG1(kG) is seen to pass entirely in the right half-plane of the complex
ωG-plane. Stable as well as neutral oscillations cease to exist after the two points on the
imaginary axis determining critical frequencies merge into a single one. Simultaneously
the loop disappears from the shape of the lower and upper branches of ωG1(kG). The
local peak d takes the appearance of a tiny kink with mG0 increasing and soon
becomes smoothed out from the rounded-off tips of both branches. A graph of
ωG1(kG) typical of the range of large spanwise wavenumbers is computed in figure 5
with mG0 = 3.0. An increase in mG0 causes the global maximum g and local maximum
l to fade away from the right-hand lobes of the lower and upper branches.
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Figure 3. Complex ωG-plane for mG0 = 0.5 and M∞ =0. The local positive peak d of
Re(ωG1) is a distinctive feature of the first dispersion curve.
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Figure 4. Complex ωG-plane for mG0 = 0.9 and M∞ =0. The local positive peak d of
Re(ωG1) disappears from the first dispersion curve.

6. Compressible flows
Consider now the general case of subsonic boundary layers with an arbitrary value

of the Mach number M∞ < 1. Our main concern will be with the limit as M∞ → 1.
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Figure 5. Complex ωG-plane for mG0 = 3 and M∞ = 0. All positive maxima of Re(ωG1) fade
away from both segments of the two branches of the first dispersion curve.

Alterations to the shape of the first dispersion curves are significant as the Mach
number undergoes an increase from zero to unity. However, with small and moderate
values of the lateral wavenumber the general behaviour of the curves still bears a close
resemblance to that typical of M∞ = 0. Figure 6 drawn for mG0 = 0.5 and M∞ = 0.98
illustrates this statement.

A distinction between the curves in figures 3 and 6 relates mainly to the magnitude
maxg[Re(ωG1)] of the global maximum g. It increases from 3.21 to 3.92 with the Mach
number growing from 0 to 0.98. At the same time, the magnitude maxd[Re(ωG1)] of
the local peak d at the tip of a loop incorporated into either of the two branches
of the first dispersion curve remains almost unchanged, an approximate estimate
being maxd[Re(ωG1)] = 0.24 regardless of the Mach number. The frequency interval
of stable oscillations becomes broader for higher values of the Mach number.

The shape of the first dispersion curves significantly changes on moving to the
larger values of the lateral wavenumber. Whereas the curve in figure 4 plotted for
mG0 = 0.9 and M∞ = 0 has no portion in the left half-plane and no loop in the form of
both branches located in the right half-plane of the complex ωG-plane, the dispersion
curve in figure 7 drawn with the same mG0 = 0.9 and M∞ =0.98 possesses these two
distinctive features. Therefore, stable oscillations appear in the spectrum of swirling
waves when we enter the transonic regime. Most importantly, the local peak d emerges
to crown the loop. The magnitude maxg[Re(ωG1)] of the global maximum g increases
substantially from 2.83 to 4.66, and a fairly accurate estimate maxd[Re(ωG1)] = 0.4
holds for the local peak d as the Mach number approaches unity.

At even greater values of the lateral wavenumber, the alterations to the shape
of the first dispersion curves occur more slowly. However, when the Mach number
approachesly unity, perceptible changes are observed in the curves with equal mG0

(not shown). Instead of having a rounded-off joint of two lobes included in both
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Figure 6. Complex ωG-plane for mG0 = 0.5 and M∞ =0.98. For small and moderate values
of the spanwise wavenumber the first dispersion curve varies slightly with the Mach number
increasing to 1.

branches making up the first dispersion curve for mG0 = 3.0 in figure 5, a loop with
the local peak d at its tip reappears in the vicinity of the origin and is at the basis of
the wave/vortex eigenmodes’ interaction. The magnitude maxd[Re(ωG1)] is as much as
1.05. The interval of stable oscillations becomes appreciable. Thus, the loop crowned
with the sharp peak d proves to be a common characteristic of the first dispersion
curves at M∞ close to 1.

7. Convective and streamwise absolute instabilities
For all M∞ < 1, the occurrence of the small local peak d in the domain where

the left-hand and right-hand lobes of each branch merge together has a profound
consequence for the behaviour of unstable disturbances periodic in the lateral
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Figure 7. Complex ωG-plane for mG0 = 0.9 and M∞ = 0.98. A loop with a local positive peak
d of Re(ωG1) reappears in the vicinity of the origin.

direction. It follows from the general concepts of physics (see for instance Landau &
Lifshitz 1959) that positive maxima attained by the real part of the complex frequency
are responsible for the wave-packet generation in any viscous shear flows. This
property was recently exploited by Ryzhov & Terent’ev (1998) to compute the vigorous
amplification of modulated signals in a three-dimensional boundary layer with
crossflow. Owing to the fact that wave packets are the most enhancing disturbances,
they are of particular importance in predicting different kinds of boundary-layer
instabilities to swirling waves on a concave surface. To be specific, compare the
wave packets associated with the global maximum g and the local maximum l of
Re[ωG1(kG)] on the right-hand lobe to that induced by the small positive peak d in
the domain where the left-hand and right-hand lobes merge to make up either the
lower or the upper branch of the first dispersion curve. Since dRe[ωG1(kG)]/dkG =0
at the extremal points we may introduce the group velocities Vg , Vl and Vd defined
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through

V = − dIm [ωG1 (kG)]

dkG

= −dIm [ωG1 (kG, mG0)]

dkG

(7.1)

and labelled with the same subscripts g, l and d . Notice that the definition in
(7.1) where the dependence on M∞ and DG is omitted relates to highly modulated
disturbances with a fixed value mG0 of the lateral wavenumber. As mentioned above,
the derivative d Im[ωG1(kG)]/dkG is negative at each point of the right-hand lobes,
therefore both Vg > 0 and Vl > 0 like the phase velocity of Tollmien–Schlichting
harmonic waves. Unstable monochromatic wave trains as well as wave packets induced
by the global maximum g and the local maximum l underlie the conventional route
to transition triggered by convective instability. In this scenario, linear and then
nonlinear amplification leading to transition takes place downstream of a perturbing
agency.

On the other hand, it follows from figures 2, 3, 6 and 7 that the negative sign
of d Im[ωG1(kG)]/dkG changes to the positive sign when passing through the local
peak d at the tip of the loop. In compliance with the observation on the sign of
Vd , we may anticipate that any z-periodic perturbing source installed on a concave
surface is capable of emitting, in the pulse mode, the modulated signals advancing
upstream. Since maxd[Re(ωG1)] is more than ten times less than maxg[Re(ωG1)] for
the case illustrated in figures 3 and 6, the amplitude of the disturbance upstream of
the perturbing agency might be expected to be much weaker than the amplitude of the
wave packets sweeping downstream. We emphasize at this point that the oscillation
pattern in front of the exciting source is strongly influenced by the contribution
from positive values of Re(ωG1) along the left-hand lobes with d Im(ωG1)/dkG > 0
varying monotonically. Hence the signal penetrating upstream is not a classical
wave packet that depends only on an immediate vicinity of maxd[Re(ωG1)]. The
continuous contribution from the left-hand lobes becomes more significant in the
case illustrated by figure 4 where mG0 = 0.9, M∞ = 0 and the local peak d tends to
disappear from the shape of the first dispersion curve. However, with the Mach
number reaching a large subsonic value M∞ = 0.98 the local peak d reappears in
the form of the loop close to the origin in figure 7 and the role of this peak
in inducing weak wave packets upstream substantially increases. With the lateral
wavenumber mG0 increased to 3.0, no points with extremal values of Re(ωG1) are
seen in the first dispersion curve drawn in figure 5 for M∞ = 0. Accordingly, a
single disturbance pattern moving as a whole downstream and with long-scaled
pulsation cycles in the upstream direction might be reasonably predicted to be brought
about by the continuous variations of Re(ωG1) > 0 and d Im(ωG1)/dkG, both negative
and positive.

The signals of all the types under discussion grow exponentially fast. Hence we
are led to introduce the concept of absolute instability in the streamwise direction as
applied to the two-dimensional boundary layer on a concave surface. This concept,
as distinct from the absolute instability proper (Huerre & Monkewitz 1990; Brevdo
1991), has been put forward by Lingwood (1997) and Ryzhov & Terent’ev (1998)
in studies of the initially three-dimensional boundary layer with crossflow on a
swept wing. They coined a new term to emphasize the essence of the matter that
disturbances from a point source are absolutely unstable in the chordwise direction
on the wing surface but free to drift in the spanwise direction. The well-organized
z-periodic structures of Görtler vortices recorded in wind-tunnel tests (Saric 1994)
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seem to be more relevant to the transition process on a concave surface, compared
to a point-impulse excitation.

A model to be tested experimentally for demonstrating centrifugal instability in
the boundary-layer flow should have a concave insert downstream of a nearly flat
portion of a wing. In the absence of absolute instability in the streamwise direction,
the boundary layer on the front part of the wing surface would be impacted in the
linear stage by only two-dimensional Tollmien–Schlichting waves up to the line where
the concave insert sticks out of the flat plate. However, in measurements by a special
single-axis three-component laser velocimeter Mangalam et al. (1985) observed small
spanwise variations of the streamwise velocity at or just ahead of the beginning of
the concave zone. The wavelength of this variation matched the observed wavelength
in the downstream concave region, pointing to the vortical nature of upstream
stretching disturbances. This observation provides direct evidence in support of the
concept under discussion. It is worth noting that nonlinear structures resulting from
the swirling waves are difficult to record in front of the concave insert installed
on the wing because the magnitude of the local peak d is small and the spiral-
type Görtler vortices decay without being maintained by centrifugal forces on the flat
surface. For the same reason, the swirling waves are hardly detectable computationally
without taking special precautions. This difficulty was obviated in Ryzhov (2003) and
Ryzhov & Bogdanova-Ryzhova (2003) where large-amplitude short-scaled oscillation
cycles produced by maxg[Re(ωG1)] are partially filtered out from downstream
moving wave packets. With filtering incorporated into a numerical scheme, the
difference in the amplitude of short-scaled and long-scaled cycles is substantially
reduced. In consequence, the upstream moving wave packets can be clearly seen in
the computation.

8. Receptivity to surface vibrations
As a rule, the Görtler vortices are recorded in wind-tunnel tests as an array

of elongated structures spaced periodically in the spanwise direction Saric (1994).
Starting from this observation, let us consider a simple receptivity problem where
disturbances are assumed to be induced by a vibrating ribbon brought into operation
in a pulse mode. Since impulsively excited wave packets have the spectrum of
frequencies which necessarily contains the most amplified linear modes, they may be
envisioned as disturbances vigorously building up in time and space.

Initial-boundary-value problem

Guided by these preliminary remarks, we concentrate in the subsequent analysis on
wave systems emitted during the initial pulse motion of the ribbon. To attain this
goal, the ribbon is specified by

y = yw =

{
a sin (ω0t) f (x) cos (m0z) , t � 0,

0, t < 0,
(8.1)

with a function f being effectively non-zero only within a finite interval. The
perturbing agency amplitude is fixed by a parameter a which is assumed to be
small. When applied to the Görtler spectral side band, f should be transformed by
means of

f → ε−3/7 (κD)−1/7 fG(xG). (8.2)
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As a result the ribbon shape

yG = yGw =

{
a sin (ωG0tG) fG (xG) cos (mG0zG) , tG � 0,

0, tG < 0
(8.3)

remains invariant.
The no-slip conditions

u = w = 0, (8.4a)

v =
∂yw

∂t
(8.4b)

at the moving wall with y = yw(t, x, z) given in (8.1) replace (3.10). In the receptivity
problem posed, it is natural to choose as initial data

u = w = 0 at t = 0 (8.5)

in order to observe the birth and subsequent development of various types of
disturbances.

The Prandtl equations (3.5a–c) supplemented with the interaction law (3.11) and
subjected to the limit conditions (3.9a, b) as well as the boundary conditions (8.4a, b)
are linearized by using (4.1) with the small parameter a prescribing the ribbon
vibration swing. According to the discussion in § 5, the resulting linear problem is
well posed.

With allowance made for (4.1) and (8.1), the no-slip conditions (8.4a, b) reduce to

(ũ, ṽ, w̃) = [− sin(ω0t), ω0 cos(ω0t), 0]f (x)Re(eim0z) at y = 0, t � 0. (8.6)

In line with (8.6), a solution is sought in the form

(ũ, ṽ, w̃, p̃, Ã) = Re[(uc, vc, wc, pc, Ac)e
im0z]. (8.7)

As distinct from (4.2), here the desired complex-valued functions uc, vc, wc, pc, Ac are
transformed into the Laplace integral in t to accommodate the initial data (8.5) and
the Fourier integral in x by means of

[uc(ω, k, y), vc(ω, k, y), wc(ω, k, y), pc(ω, k), Ac(ω, k)]

=

∫ ∞

−∞
d x

∫ ∞

0

e−(ωt+ikx)[uc(t, x, y), vc(t, x, y), wc(t, x, y), pc(t, x), Ac(t, x)]dt. (8.8)

Substitution of (8.7) and (8.8) into the system of linearized Prandtl equations leaves
us with a set of ordinary differential equations (4.3a–c) for the function-images uc,
vc, wc, pc, Ac if the initial data for ũ and w̃ are zero. The limit conditions (4.4a, b)
at infinity and the interaction law cast in (4.5) remain intact. The no-slip conditions
become

(uc, vc, wc) = (−1, ω, 0) f (k)
ω0

ω2 + ω2
0

at y = 0 (8.9)

where f (k) is a Fourier transform of the vibrator shape f (x). With f (x) assumed
below to be an even function, the Fourier transform f (k) is real.

With (8.9) substituted for homogeneous conditions (4.6), we can easily formulate a
boundary-value problem for F = kuc + m0wc. Notice that F may be regarded as an
asymptotic representation, as Re → ∞, of the normal Orr–Sommerfeld mode both in
the Tollmien–Schlichting spectral range and the vortical Görtler side band.
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Pressure disturbances

In what follows, we confine ourselves to the analysis and computation of the pressure
variations using an explicit representation

pc =
ω0i

4π2

∫ ∞

−∞
dkeikxf (k)

{
k2

[
k2 +

(
1 − M2

∞
)−1

m2
0

]−1/2
+ ε3κD

}
× J (t, k; ω0, m0; M∞, ε, κD) , (8.10a)

J =

∫ L+i∞

L−i∞
dωeωt Φ (Ω)(

ω2 + ω2
0

)
[Φ (Ω) − Q (k, m0; M∞, ε, κD)]

(8.10b)

that is derivable in a straightforward way from a solution of the boundary-value
problem posed for F . With the dispersion-relation properties clarified in § 5, we may
proceed to calculating the wave systems both downstream and upstream of the ribbon
by utilizing a technique developed by Ryzhov & Terent’ev (1998). Since a continuous
part is missing from the ω-spectrum for all real k, both positive and negative, let us
expand the inverse Laplace transform (8.10b) entering the right-hand side of (8.10a)
into series in residues of the integrand at its poles. Finally, we are left with a simplified
expression

pcG = − i2/3ωG0

2π

∫ ∞

−∞
dkGeωG1(kG)tG+ikGxGf G (kG)

×
{

k2
G[

DGk2
G+

(
1−M2

∞
)−1

m2
G0

]1/2
+1

}
k

2/3
G dAi (ΩG1)/dY[

ω2
G1 (kG) +ω2

G0

]
Ai (ΩG1) [ΩG1+Φ (ΩG1)]

(8.11)

to evaluate the pressure in the wave-packet oscillation cycles. Here a transformation
from the triple-deck to Görtler variables has been used to identify the disturbances
called into being by the left-hand lobes with d Im(ωG1)/dkG > 0 which are incorporated
into both branches of the first dispersion curve.

Wave packets

Computed results are in full accord with the inferences from the general analysis
of spectral properties intrinsic to modulated disturbances both in the Tollmien–
Schlichting wave range and the Görtler vortex side band. They clearly demonstrate
the importance of the vortex spacing and Mach number in determining the pulsation
systems emitted by the ribbon. Our purpose is to trace the changes in the disturbance
pattern related to typical forms of the first dispersion curves in figures 3–7 as the
spanwise wavenumber increases from 0.5 to 3.0 while the Mach number rises from 0
to a high subsonic value 0.98.

The global maximum g and the small positive peak d of Re(ωG1) are the ‘silent’
features of the dispersion curves in figures 3 and 6 where mG0 = 0.5. Both curves relate
to a range of vortex spacing that leads to a well-defined loop in the form of either of
their branches. Since the curves are very much alike, the pressure variations associated
with this value of mG0 are displayed in figure 8 for M∞ = 0 only. The results computed
substantiate theoretical predictions from the general concepts of physics that have
been made in § 7. Accordingly, the global maximum induces short-scaled pulsation
cycles in the wave packet moving downstream, in compliance with the conventional
scenario of convective instability. The local peak d in the dispersion-relation loop
underlies much longer pulsation cycles in the signal advancing in the region upstream
of the vibrating ribbon, contrarty to traditional notions of hydrodynamic stability
theory. Similar disturbances have been discovered by Ryzhov & Terent’ev (1998) in
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Figure 8. Wave system for mG0 = 0.5, M∞ = 0 and tG = 12.0. Two distinct wave packets
propagate both downstream and upstream, the latter provoking absolute instability in the
streamwise direction.
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Figure 9. Wave system for mG0 = 0.9, M∞ = 0 and tG = 12.0. A weak upstream advancing
signal is produced by the continuous contribution from positive Re(ωG1) along the entire
length of the left-hand lobes.

the three-dimensional boundary layer with crossflow. The oscillation pattern in the
upstream penetrating signal was found to be strongly influenced by a continuous
distribution of positive Re(ωG1) over some portions of the left-hand lobes with
d Im(ωG1)/dkG > 0 that are incorporated into both branches of the first dispersion
curve. Hence, the signal in front of the vibrating ribbon emerges not as a classical wave
packet depending on an immediate vicinity of maxd[Re(ωG1)], but rather the amplitude
of its pulsation cycles decays very slowly as xG takes on large negative values. Then,
maxd[Re(ωG1)] is more than ten times smaller than maxg[Re(ωG1)], therefore the
maximum swing in the highly modulated wave packet that sweeps downstream would
exceed the size of the upstream penetrating signal by several orders in magnitude
at tG = 10−15 if no special technique has been used in the computation. Since our
interest at this point focuses on the oscillation pattern advancing upstream of a
perturbing source, the short-scaled cycles in the downstream moving wave packet
produced by maxg[Re(ωG1)] were partially filtered out when computing the pressure
distributions in figure 8 shown on a representative scale. Otherwise, the upstream
stretching pulsation structure could not be displayed on a single plot with the highly
modulated disturbance behind the ribbon. Similar plots using representative scales
are exhibited in other figures below to trace the disturbance development with time.

The disturbance pattern computed with mG0 = 0.9 and M∞ = 0 is drawn in figure 9.
The role of the tiny kink with maxd[Re(ωG1)] in the first dispersion curve, as was
discussed in connection with figure 4, becomes negligible in inducing oscillations in
front of the perturbing source. Here the continuous contribution from positive Re(ωG1)
along the left-hand lobes with d Im(ωG1)/dkG > 0 becomes of crucial importance. On
the other hand, maxg[Re(ωG1)] stands out sharply in the form of the right-hand lobes
with d Im(ωG1)/dkG < 0. As a consequence, the size of the long-scaled oscillation
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Figure 10. Wave system for mG0 = 0.9, M∞ = 0.98 and tG = 9.0. Disruption of oscillation
cycles into two signals is due to the reappearance of the local positive peak d of Re(ωG1) in
the first dispersion curve.

cycles upstream of the vibrating ribbon is small, whereas the downstream moving
disturbance still arises as a classical highly modulated wave packet, notwithstanding
the fact that short-scaled pulsations are partially damped out in the computation.

Let us turn to the high subsonic Mach number regime specified by the same value
mG0 = 0.9 and M∞ =0.98. As follows from the plot of the first dispersion curve in
figure 7, the loop with the local peak d of Re(ωG1) reappears in both branches
close to the origin. Hence the contribution from the immediate vicinity of d to
the pulsation system ahead of the ribbon might reasonably be expected to increase
somewhat. The wave pattern presented in figure 10 substantiates this prediction. The
upstream moving disturbances separate from the downstream sweeping wave packet,
slowly build up and gradually generate a weakly modulated signal. Disruption of the
oscillation system into two parts with a short interval of almost uniform motion in
between occurs because of a large portion of the loop in the half-plane Re(ωG) < 0
that causes amplitude damping.

Drastic alterations to the wave pattern that propagates in the incompressible
boundary layer come about, with mG0 attaining a value as large as 3.0. The evolution
of a single disturbance with time and space can be observed in figure 11 with longer-
scaled cycles extending far upstream. This structure was predicted in § 7 on the basis
of simple arguments that all the points with positive extrema of Re(ωG1) disappear
from the left-hand and right-hand lobes of the first dispersion curve. Thus, the signal
in figure 11 is produced entirely by the contribution from these lobes with variations
of d Im(ωG)/dkG continuously changing from negative to positive. As a result, the
single wave system is equally responsible for the conventional scenario of convective
instability and a new type of absolute instability in the streamwise direction. As has
been already mentioned, the points with extrema of Re(ωG1) are re-established in the
shape of the first dispersion curve, and a loop again emerges to connect its left-hand
and right-hand lobes as M∞ → 1. Disruption of the wave pattern into two modulated
signals takes place in a manner similar to that in figure 10. The downstream moving
wave packet triggers the conventional path to convective instability whereas the
upstream advancing oscillation cycles provoke absolute instability in the streamwise
direction.

9. Discussion and conclusions
As a rule, the interaction of Tollmien–Schlichting waves and Görtler vortex

eigenmodes has long been considered by assuming the disturbance amplitude to
exceed a certain threshold value, thereby switching on weakly or truly nonlinear
amplification mechanisms. For sufficiently large pulsations, the mean-flow profile
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Figure 11. The evolution of a wave pattern computed with mG0 = 3.0 and M∞ = 0 and various
tG. Signals of this type underlie equally the conventional route to convective instability as well
as absolute instability in the streamwise direction.

throughout the boundary layer is completely altered from its initial unperturbed
state. Under these circumstances, interacting oblique Tollmien–Schlichting waves can
generate longitudinal vortices very much akin to Görtler vortices even in the absence
of wall curvature. The strongly nonlinear interactions also include the possibility of a
finite-distance break-up in the spatially developing flow, owing to a singularity in the
instantaneous displacement thickness. A thorough study of these distinctive properties
can be found in Hall & Smith (1988, 1989, 1991) and references therein.

At approximately the same time Timoshin (1990) and Denier et al. (1991)
independently identified five different asymptotic regimes intrinsic to Görtler vortical
periodic structures depending on the vortex spacing. The triple-deck disturbance
pattern underlies one of them, controlled by the viscous/inviscid interaction typical
of many boundary-layer flows. A set of governing equations without time-dependent
terms turns out to be identical to that derived earlier by Rozhko & Ruban (1987)
and applied by Rozhko et al. (1988) to the steady boundary layer on a body with
an elongated obstacle placed on its curved surface. With time-dependence included,
Ruban (1990a, b) and Choudhari et al. (1994) attacked the receptivity problem on the
wave packet emitted by a vibrator operating in the pulse mode.

A composite asymptotic model developed in § 3 for large Reynolds numbers covers
both the Tollmien–Schlichting wave and Görtler vortex disturbances coupled together
through the interaction law (3.11) that specifies the self-induced pressure variations in
the system of governing Prandtl equations (3.5a–c). Unlike the high Reynolds number
descriptions adopted in Hall & Smith (1988, 1989, 1991), the model involves the
wave/vortex interaction even within the framework of a linear approach due to the
fact that there exists a domain in the spectral space where the eigenmodes of both
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types overlap. As a result, the frequencies and wavenumbers inherent in Tollmien–
Schlichting waves form the base spectrum and those specific to Görtler vortices give
rise to a side band where the interaction law (3.11) reduces to its simplified version
(3.17) by Rozhko & Ruban (1987) and the streamwise pressure gradient drops out
of the Prandtl equations. However, in the overlapping domain of the spectral space,
all the eigen-frequencies and wavenumbers are scaled and normalized according to
(4.13a–c) and (5.1a–c) that makes both terms in the braces in (4.11) of equal order in
magnitude for typical transition conditions.

Unusual behaviour of the first dispersion curves in the auxiliary ΩG-plane and
in the plane of complex frequencies is a direct consequence of the wave/vortex
eigenmodes’ coupling in the linear stage of amplification. As has been shown in
§ § 5 and 6, the first dispersion curve divides into two separate branches in the ωG-
plane and each of the branches consists of two segments associated either with
the Tollmien–Schlichting wave or Görtler vortex eigenmodes. With moderate values
of the spanwise wavenumber, the loop connecting both segments arises from the
eigenmodes’ interaction. A kink at the tip of the loop underlies the radiation of
upstream propagating wave packets.

The wave packets propagating downstream in figures 8–10 illustrate the
development of convective instability in boundary layers on a concave surface due
to an exponential increase of the pressure variation swing. This type of disturbance
amplification is known to be fundamental to conventional routes to transition in
two-dimensional shear flows not affected by centrifugal forces, the Blasius boundary
layer on a flat plate being the simplest example. With the surface curvature not zero,
centrifugal forces come into play; however, the contribution from the Görtler vortex
side band to the downstream sweeping wave packet is negligibly small as dictated by
the O(ε3)-correction term in the interaction law (3.11).

On the other hand, computed results introduce oscillation systems advancing against
the oncoming stream. It should be emphasized that the computed systems belong
among the disturbances developing most violently in the streamwise direction of an
incompressible boundary layer and high subsonic Mach number flows. To a marked
extent they are controlled by the local maximum d of Re(ωG1) on the loop of the
dispersion curves in figures 3, 6 and 7. Signals of this kind result in the initial flow
field breakdown ahead of a perturbing source that operates in the pulse mode. They
are responsible for the streamwise absolute instability of a steady boundary layer on
a concave surface.

The oscillation pattern exhibited in figure 11 for closely spaced vortices (mG0 = 3.0)
in the incompressible boundary layer gives an example of a single modulated signal
excited by a ribbon. As predicted, the signal moves downstream as a whole, but long-
scaled pulsation cycles at its rear extend far upstream. The reason is that all positive
extrema of Re(ωG1) fade away from the shape of the first dispersion curve in figure 5.
The oscillation pattern under consideration provokes equally the conventional path
to convective instability as well as absolute instability in the streamwise direction.

The first evidence for the existence of absolutely unstable oscillations in flows
acted upon by centrifugal forces came to light in a related study of a rotating disk
by Lingwood (1995). She advanced, using the pinching criterion from the work of
Briggs (1964) and Bers (1975) in plasma physics, theoretical arguments establishing
the concept of absolute instability and then substantiated her analysis by direct
measurements. Apparently, the axial structure of the excited velocity field in the
experimental investigation by Lingwood (1996) was of the type exhibited in figure 11,
where a single disturbance consists of pulsation cycles stretching both upstream and
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downstream. The position at which the disturbance trailing edge comes to rest on
the disk is identified with the laminar boundary-layer breakdown and the onset of
transition. However, the rotating-disk flow is strictly periodic in the circumferential
direction, hence only the radial component of the group-velocity vector has to vanish
for absolute instability to become operative.

Until very recently, there was a good consensus of opinion that the rotating-disk
flow can serve as a pertinent model for the swept-wing boundary layer. A closer look
at the problem led Lingwood (1997) and Ryzhov & Terent’ev (1998) to introduce
the new concept of streamwise absolute instability. They started from a periodic
formulation assuming the initial perturbation to derive from a ribbon aligned with
crossflow. Under these conditions, the group-velocity vector points in the direction of
the local outer stream. Note however that the two studies cover different intervals of
frequencies and wavenumbers.

The spanwise-periodic formulation given in (8.1) or (8.3) above is closely related
to that in Ryzhov & Terent’ev (1998) assuming the Reynolds number to be large
enough. The study focuses on the streamwise absolute instabilitiy leaving aside the
issue of absolute instability proper (Huerre & Monkewitz 1990; Brevdo 1991). The
formulation is dictated by the fact that the well-organized z-periodic structures are
experimentally known to arise in boundary layers on a concave surface (Saric 1994).
Therefore, the assumption of a point-impulse excitation would not lead to an adequate
theoretical problem. The constraints imposed allow us to deal with a single inverse
Fourier transform (8.11) in the Görtler spectral range in order to compute the low-
amplitude long-scaled oscillation cycles in the wave packets advancing upstream
of the ribbon. From a purely mathematical point of view, a multiplier k−5/3 or
k

−5/3
G , entering, respectively, expressions (4.11) or (5.2), on the right-hand side of the

dispersion relation (4.10) lies at the heart of streamwise absolute instability in a two-
dimensional boundary layer on a concave surface. An analogous singularity features
a three-dimensional boundary layer with crossflow and renders it absolutely unstable
in the streamwise direction Ryzhov & Terent’ev (1998). It is the denominator of Q

which causes the first dispersion curve in the complex frequency plane to divide into
two symmetrically located branches, each of which consists of two different lobes
merging together as shown in figure 2 for small values of the spanwise wavenumber.
The left-hand lobes are missing from the shape of the first dispersion curve in the
particular case of two-dimensional disturbances with mG0 = 0. Both right-hand lobes
carry negative values of d Im(ωG1)/dkG whilst the same derivative has positive values
along the left-hand lobes. Therefore, the two right-hand lobes trigger convective
instability as is well-known from numerous studies. On the other hand, the two left-
hand lobes are associated with absolutely unstable disturbances capable of advancing
upstream from the periodically shaped ribbon. Disturbances of this kind originate
in the boundary layer on a concave surface from coupling of travelling waves with
unsteady Görtler vortices.

Both left-hand lobes may be treated as creating a specific viscous eigenmode in
the plane of complex frequencies. Apparently, an analogous but spatially damped
inviscid mode has been identified by Mack (1985) and Balakumar & Malik (1990) in
connection with the rotating-disk boundary layer. The new mode briefly mentioned
by them is central to the analysis in Lingwood (1995). Note that the behaviour
of the eigenmode comprising both left-hand lobes of the first dispersion curve
becomes intricate in the plane of complex wavenumbers because it has branch-point
singularities and cuts (Ryzhov & Terent’ev 1986).
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A streaky pattern at the front edge of the disturbance can be evaluated starting from
the Kelvin stationary-phase principle on condition that |xG/tG| 
 1. The structure
acquired by the signal with small values of the surface curvature κ is of special
interest. Thus, the original triple-deck variables should be substituted into a relation
that derives from the Kelvin principle applied to an integral in (8.11). As a result, we
have

p = − ω0

(2π)1/2
D

21/32
G f (kph) |m0|−1/2 t3/4

(−x)5/4
cos (m0z) (9.1)

where f (kph) is real with the vibrator shape f (x) prescribed by an even function. A
stationary-phase wavenumber

k2
ph = D

1/8
G m2

0

t

(−x)

exists provided that the streamwise coordinate x takes on negative values in the region
upstream of a vibrator. Clearly, this is a standing wave with amplitude algebraically
growing in time and decaying to zero with upstream distance from the pulsed ribbon.
On the strength of (5.3), we may infer from (9.1) that the upstream propagation
vanishes when the Reynolds number tends to infinity and/or the surface curvature
becomes infinitely small.

A comment is due now on the basic solution

u = y, v = w = p = A = 0 (9.2)

of the Prandtl equations with the self-induced pressure gradiant included that was used
in (4.1) to develop a linear approach. As is evident from the foregoing, this solution
does not represent a physically realizable boundary layer as a final steady state.
The spanwise-periodic disturbances exponentially grow at every point in space and
strongly affect the velocity field. Neither the basic state (9.2) nor the exponentially
amplifying disturbances can be recorded experimentally. A value of the spanwise
wavenumber m0 is likely to be forced through the nonlinear selectivity mechanisms
of different mode amplification that triggers the primary stationary vortex pattern
on a concave surface. From the theory advanced, the primary vortex pattern may be
predicted to extend upstream, thereby offering a clue to putting to the test the concept
of streamwise absolute instability. Experimental evidence for the upstream influence
exerted by the Görtler vortex structure is traced back to Mangalam et al. (1985)
where “. . .velocity measurements indicated small spanwise variation at or just ahead
of the beginning of the concave zone”. This direct observation is at variance with the
conventional stability results because no streamwise vortices can start developing on
a flat portion of the surface located in front of a concave insert. Indeed, if the Görtler
vortices in Mangalam et al. (1985) were caused by the mechanism of convective
instability, they would require some distance from the leading edge of the concave
insert to enhance to a measurable size. Convectively unstable disturbances would be
swept downstream without giving rise to spanwise variation in front of the concave
insert on an otherwise flat plate.

The subsequent growth of primary Görtler vortices is controlled by the linear
centrifugal instability up to a position on the concave surface where strong nonlinear
mechanisms come into operation (Hall & Smith 1988, 1989, 1991). Secondary
travelling-wave-type disturbances in the form of sinuous and varicose eigenmodes
start developing and completely modify the initial velocity field. These secondary
instabilities eventually provoke the breakdown of the laminar boundary layer at
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some stage prior to transition (Li & Malik 1995; Bottaro & Klingmann 1996). It
is worth noting that a similar mechanism controls the primary crossflow vortices
(Koch 2002; Saric et al. 2003). Transition to turbulence in a swept-wing boundary
layer occurs farther downstream as a result of secondary instabilities of a great
many nonlinearly interacting modes coming into play only above a certain threshold
amplitude of the primary crossflow vortex pattern. It is vital to note that in general
the secondary instability properties need not be the same as those intrinsic to the
primary instability. In fact, all secondary instabilities discovered so far seem to be
of convective nature (Koch 2002; Wassermann & Kloker 2002; Saric et al. 2003).
Hence the streamwise absolute instability of primary vortices does not necessarily
mean earlier transition. On the contrary, this opens up new intriguing possibilities
for flow control by artificially exciting the primary vortices with lower receptivity to
external perturbations and/or small growth rates of secondary instabilities. Instead of
hastening transition, the secondary vortices may delay the onset of random pulsations.

The authors are indebted to all of the referees for their remarks and suggestions.
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vortices J. Fluid Mech. 297, 77–100.

Lingwood, R. J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech.
299, 17–33.

Lingwood, R. J. 1996 An experimental study of absolute instability of the rotating disk boundary-
layer flow. J. Fluid Mech. 314, 373–405.

Lingwood, R. J. 1997 On the impulse response for swept boundary-layer flows. J. Fluid Mech. 344,
317–344.

Mack, L. M. 1985 The wave pattern produced by point source on a rotating disk. AIAA Paper
85-0490.

Mangalam, S. M., Dagenhart, J. R., Hepner, T. E. & Meyers, J. F. 1985 The Görtler instability
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